Assignment 12

Exercises: 16.8 no $10,14,16,17,19,20,21$.

No need to hand in any exercises.

Supplementary Problems

1. (Optional) Let Ω be a region in space which is bounded by a smooth closed surface S.
(a) Use the divergence theorem to derive the formula of volume of Ω :

$$
|\Omega|=\frac{1}{3} \iint_{S}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot \mathbf{n} d \sigma
$$

where \mathbf{n} is the outer unit normal at S.
(b) Assume that Ω is contained in a ball of radius R. Derive the inequality

$$
|\Omega| \leq \frac{1}{3} R|S|
$$

where $|S|$ is the surface area of S.
(c) Find a region Ω so that the inequality in (b) becomes equality.

